Radiation-Induced Grafting with One-Step Process of Waste Polyurethane onto High-Density Polyethylene
نویسندگان
چکیده
The recycling of waste polyurethane (PU) using radiation-induced grafting was investigated. The grafting of waste PU onto a high-density polyethylene (HDPE) matrix was carried out using a radiation technique with maleic anhydride (MAH). HDPE pellets and PU powders were immersed in a MAH-acetone solution. Finally, the prepared mixtures were irradiated with an electron beam accelerator. The grafted composites were characterized by Fourier transformed infrared spectroscopy (FT-IR), surface morphology, and mechanical properties. To make a good composite, the improvement in compatibility between HDPE and PU is an important factor. Radiation-induced grafting increased interfacial adhesion between the PU domain and the HDPE matrix. When the absorbed dose was 75 kGy, the surface morphology of the irradiated PU/HDPE composite was nearly a smooth and single phase, and the elongation at break increased by approximately three times compared with that of non-irradiated PU/HDPE composite.
منابع مشابه
Preparation of High Density Polyethylene/Waste Polyurethane Blends Compatibilized with Polyethylene-Graft-Maleic Anhydride by Radiation
Polyurethane (PU) is a very popular polymer that is used in a variety of applications due to its good mechanical, thermal, and chemical properties. However, PU recycling has received significant attention due to environmental issues. In this study, we developed a recycling method for waste PU that utilizes the radiation grafting technique. Grafting of waste PU was carried out using a radiation ...
متن کاملComparison of grafting of maleic anhydride onto linear low density polyethylene with hexene-1 and butene-1 comonomers and prediction of optimum ingredients by response surface methodology
In this work, the grafting of maleic anhydride onto two types of linear low density polyethylene with hexene-1 comonomer (LLDPE-H1) and butene-1 comonomer (LLDPE-B1), in the presence of styrene monomer (St) and dicumyl peroxide initiator (DCP) has been studied. The combined influences of MAH, St and DCP on the grafting efficiency via a melt reactive mixing process have been investigated using r...
متن کاملImprovement of gas separation properties of polyurethane membrane using plasma grafting
In recent years, plasma treatments have given good results since they offer high technological efficiency with low waste generation. One of the most important characteristics of plasma methods is their action only on a thin surface layer, whereas the bulk of sample remains unchanged and the modified material keeps its chemical and mechanical properties. In this research, polyurethane membrane s...
متن کاملRecycled Polymer Materials as Aggregates for Concrete and Blocks
The potential of recycled waste polymeric materials as a substitute for aggregates in concrete has been investigated in the study. Two different types of waste polymer, namely polyurethane formaldehyde (PUF) based packaging waste and high density polyethylene (HDPE) were recycled and used in the experiment. Concrete and masonry poly block specimens were prepared using recycled polymer materials...
متن کاملInvestigations on Vinylene Carbonate. IV. Radiation Induced Graft Copolymerization of Vinylene Carbonate and N-Vinyl-N-Methylacetamide onto Polyethylene Films
Graft copolymerization of binary mixtures of vinylene carbonate (VCA) and N-vinyl-Nmethylacetamide (VIMA) onto low density polyethylene (LDPE) films was studied by the mutual y-irradiation technique. Sufficient amounts of functionally active VCA groups could be grafted onto the surface and the hydrophilicity of the surface was also improved. The grafting of VCA onto polyethylene films in the bi...
متن کامل